
Operating Instructions

BA55E001

with weight-load.lever + oleohydr. damping device

ERHARD Tilting-Disc Check Valves

- 1 Safety Aspects
- 2 Description of Product and Range of Application
- 3 Design Features Technical Data
- 4 Performance and Mode of Operation
- 5 Installation into the Pipeline Mounting
 6 Maintenance
- 7 Design with oleohydraulic damping device

These operating instructions must always be used in combination with operating instructions BA01E001!

1 Safety Aspects

According to the stipulations concerning safety for technical equipment (DIN 31000 and following) as well as the respective regulations for prevention of accidents (UVV) it is necessary to restrict access to the moving range of the weight-loaded lever and the oleohydraulic damping device. Effective protective guards have to be installed by customers.

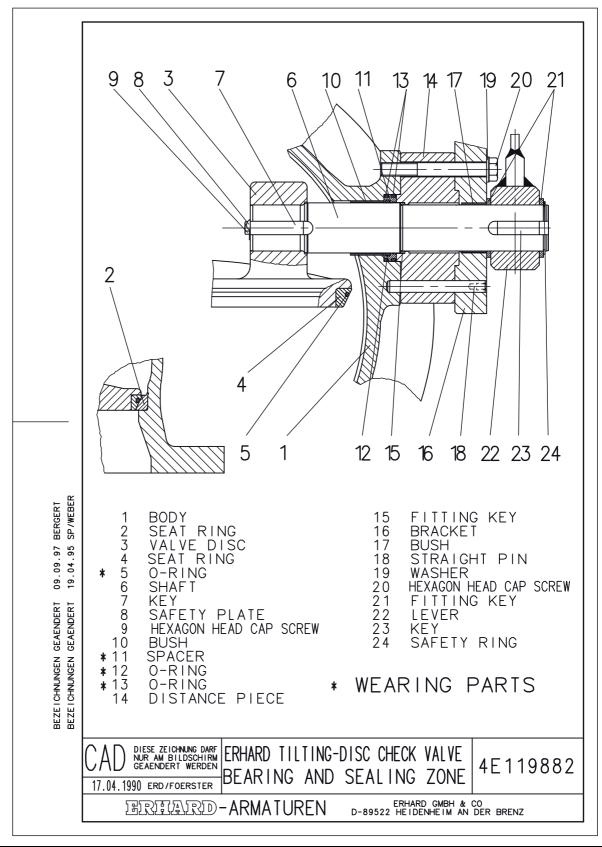
On request we will supply suitable protective guards.

2 Description of Product and Range of Application

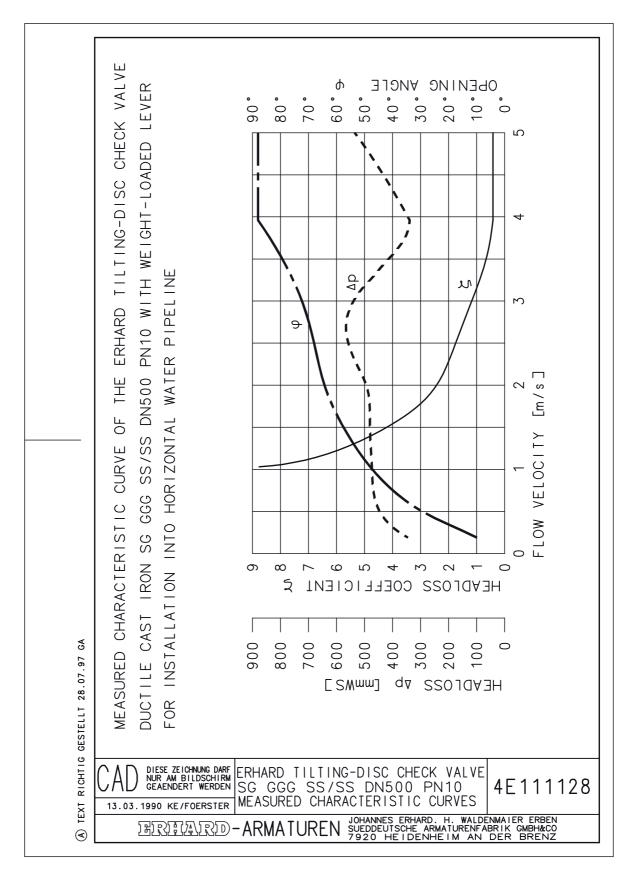
Nominal	Nominal	•	c test pressure	Max. admissible working			
size	pressure		bars	pressure in bars at a working			
DN	PN		for	temperature of			
		body	seat	> 60° C	Product No.		
200-1200	150-1200 16		10	11	550359		
150-1200			16	17,6	550459		
150-1000			25	27,5	550559		

BA55E001 March 2006 REV.7

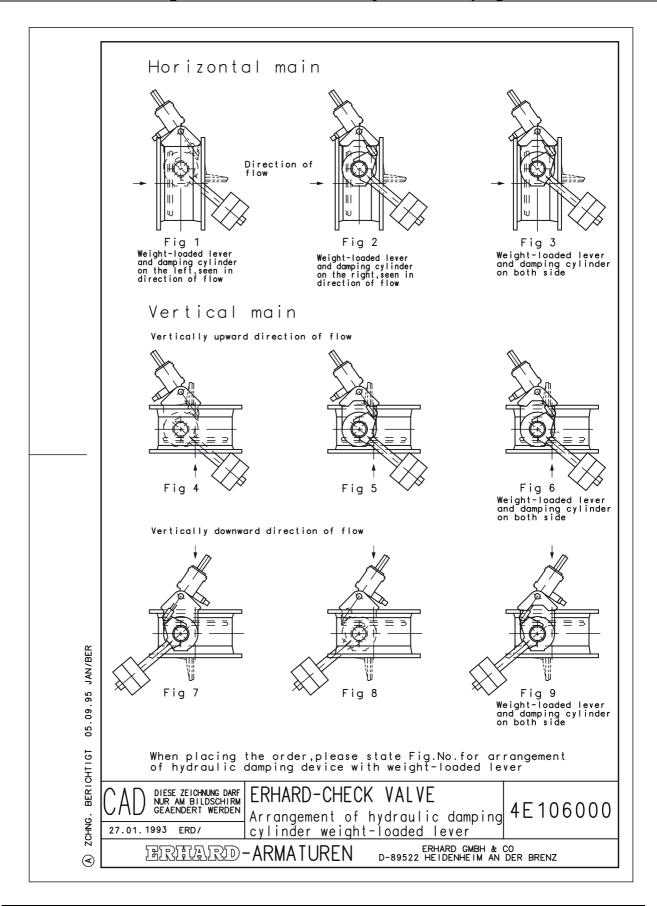
At the manufacturer`s plant the valve have been tested for tightness and strength to DIN EN12 266.

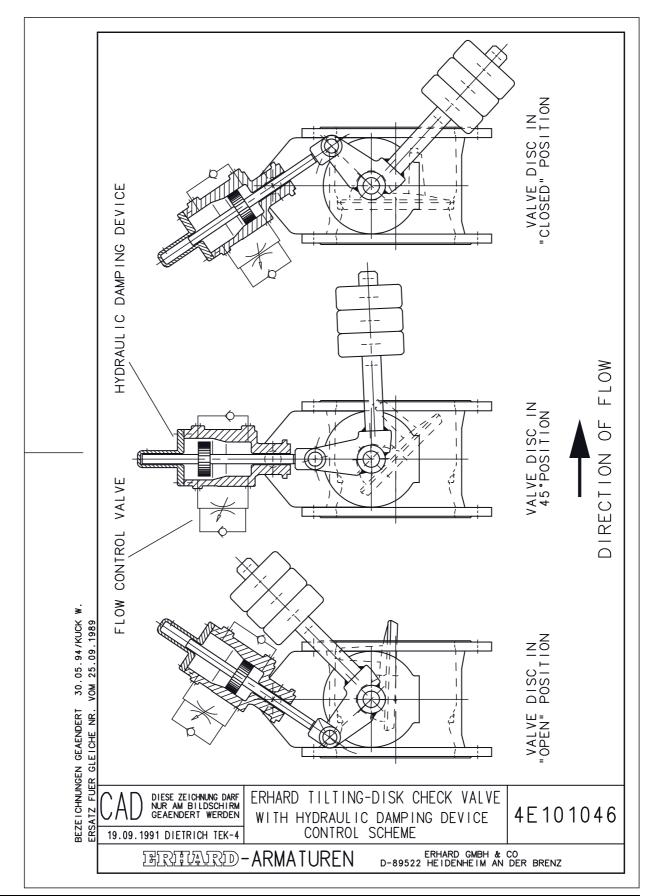

The ERHARD Tilting-Disc Check Valves

is put on for water speeds under stable flow rates according to table:

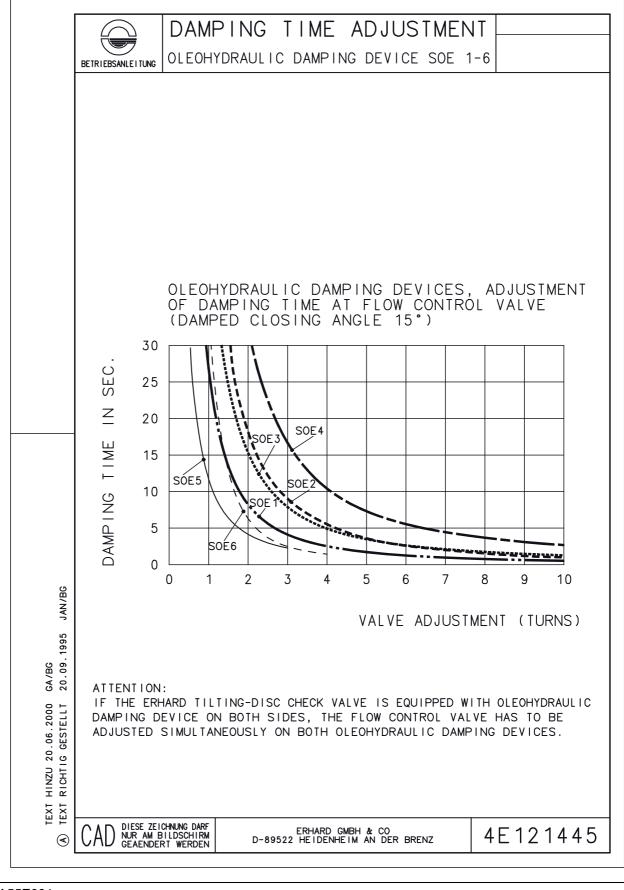

values according to EN1074-1: 2000

PFA	Velocity of flow
bar	m/s
10	3
16	4
25	5


3 Design Features – Technical Data

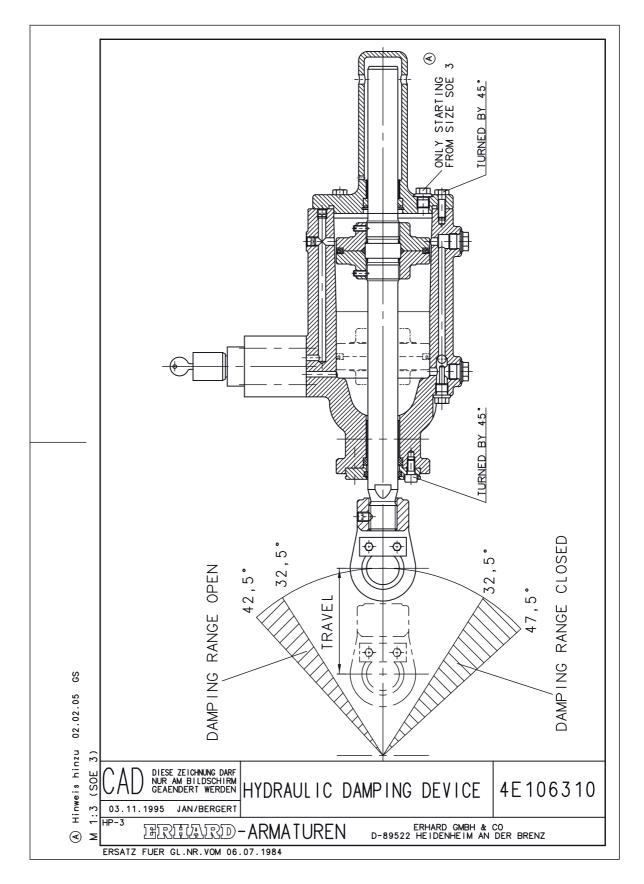

Operating Instructions for ERHARD Tilting-Disc Check Valves with weight-loaded lever and oleohydraulic damping device

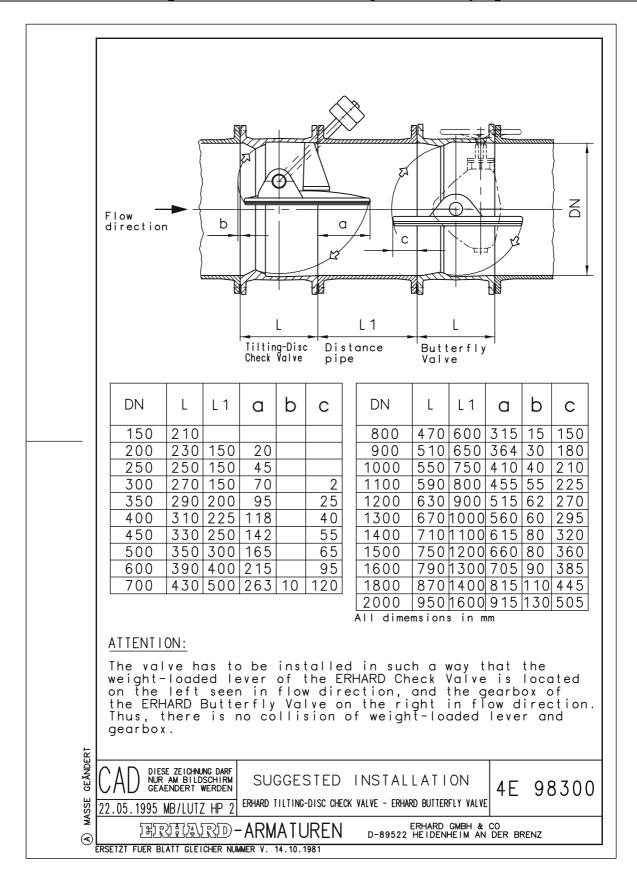
ERHARD GmbH · D-89502 Heidenheim · Postfach 1280 ☎ Phone +49 (0)7321 320-0 🖹 +49 (0)7321 320 491 e-mail: info@erhard.de Internet: http://www.erhard.de



BA55E001 March 2006 REV.7

BA55E001 March 2006 REV.7


Operating Instructions for ERHARD Tilting-Disc Check Valves with weight-loaded lever and oleohydraulic damping device



BA55E001 March 2006 REV.7

Page 7 of 14

4 **Performance and Mode of Operation**

The ERHARD Tilting-Disc Check Valves operate to the principle of a free-swinging check valve. The disc is double offset to a very high degree and is opened by the upstream flow. The closing moment resulting from the weight of the disc and weight-loaded lever acts against this opening moment. This closing moment initiates closing when the flow ceases. It can be reduced within certain limits by moving the counter-weight on the lever towards the shaft. However, it must be in any case ensured that the valve disc closes even without counterpressure.

The shaft of the ERHARD Tilting-Disc Check Valves with oleohydraulic damping device protrudes on one side (key connection). The other side is closed by a blank cover. The weight-loaded lever and the oleohydr. damping device are mounted according to the figure specified by the customer. Figure arrangement to drawing **4E106000**.

Change of the already mounted ERHARD Tilting-Disc Check Valves with oleohydraulic damping device to an other figure arrangement, can – depending on the figure – only be carried out by completely changing the shafts in the body.

At the manufacturer's plant the valves have been tested for tightness and strength to DIN EN12 266.

5 Installation into the Pipeline – Mounting

Remove all packing material from the valve. Prior to installation, check the pipeline for impurities and foreign matters and clean it if necessary.

Observe direction of installation according to arrow pointing in flow direction!

It is important that all around the valve there is free access for operation and maintenance. For outdoor installation, the customer has to protect the valve against the direct effects of the weather.

During installation of the valve, the distance between the pipe flanges should exceed the valve face-to-face dimension by at least 20 mm. Thus, the raised faces will not be damaged and the gaskets can be inserted. Steel-reinforced rubber seals are recommended for use as flange gaskets (consider resistance to flow medium and temperature).

The mating pipe flanges must be plain-parallel and concentric.

Tighten the connecting bolts evenly (without distortion) and crosswise.

ERHARD Tilting-Disc Check Valves shall not be installed directly upstream or downstream of pipeline components, as bends, valves, etc., as due to the short face-to-face dimension of the valve, the valve disc extends beyond the body flanges. The valve disc could otherwise collide with these components or the flow could be disturbed because the valve disc does not open or opens only partly (for DN 800 and larger also consider the stop when installing and removing the valve. A dismantling piece is required in this case. See catalogue sheet, table of dimensions, dimensions e4, e5, and e6).

Before filling the pipeline with water, check the valve for easy running: Operate the weight-loaded lever over the total travel (90°). Do not drop the weight-loaded lever.

6 Maintenance

ERHARD Tilting-Disc Check Valves are equipped with maintenance-free plain bearings. The precise elastomer seal inserted into the metallic sealing face of the valve disc is replaceable.

Precise elastomer seal and complete shaft seal are available as spare parts.

Prior to carrying out works at the valve, the pipeline section has to be made pressureless and emptied.

1. Replacing the shaft seal

to drawing **4E119 882**

- 1.1 Remove safety ring (24), key (23) and weight-loaded lever from shaft (6).
- 1.2 Loosen hexagon bolts (20) and remove straight pins (18). Remove bracket (16) together with distance piece (14).
- 1.3 Dismantle complete spacer with O-rings (11, 12, 13) by means of two screw drivers.
- 1.4 Mount new spacer with O-rings as well as distance piece, bracket and lever in reverse order.

2. <u>Replacing the valve disc seal</u>

to drawing **4E119 882**

- 2.1 Remove O-ring (5)
- 2.2 Rub grease approved for potable water on the new endless O-ring. Slightly extend O-ring and evenly press into dove-tail groove of the valve disc.

7 Design with oleohydraulic damping device PN10 Prod. No. 5503 ..59 PN16 Prod. No. 5504 ..59 PN25 Prod. No. 5505 ..59

7.1 Mode of operation

ERHARD Tilting-Disc Check Valves are equipped with oleohydraulic damping device, whenever

- a) backflow of the flow medium is admitted, i.e. the valve shall close in a retarded manner to reduce closing hammer.
- b) the valve shall open in a retarded manner under sudden acceleration of the flow medium (pump starts against the closed check valve) in order to prevent opening hammer.

The oleohydraulic damping device acts in both limit positions and keeps the disc from chattering over the whole travel. The oleohydraulic damping device is supported on a bracket flanged to the valve body. The piston rod is hinged on the weight-loaded lever which is firmly connected to the valve disc by the shaft.

When opening the valve, the disc can open up to approx. 10° before fully open position without any damping effect. On closing, the disc swings freely to approx. 15° before fully closed position without any damping being effected. Within this range, the inside diameter of the hydraulic damping device is increased so that oil can flow around the piston.

From 10° to the open position and from 15° to the closed position, there will be a damping effect. The damping times are adjustable by means of a flow control valve.

The closing time is preset at the manufacturer's works considering the existing weight load, but not the backpressure acting on the valve disc and has to be readjusted to the requirements of the whole system when putting the valve into operation. Changes in the damping time are set at the rotary knob of the flow control valve. The high values of the ten-mark scale are used for quick closing, the lower values for slower closing of the valve. The times can only be set when a key is put into the lock of the rotary knob.

Attention:

When the Tilting-Disc Check Valve is equipped with mounted oleohydraulic damping device on both sides, the flow control valve of both oleohydraulic damping devices must be adjusted at the same time.

Damping time adjustment to drawing 4E121 445

7.2 Limit values

Depending on the valve's shaft diameter and the material used <u>for standard type</u> <u>valves</u>, the max. admissible backpressure acting on the valve disc is limited as follows:

Nom. size DN	150	200	250	300	350	400	450	500	600	700	800	900	1000
Max. admiss. back pressure (bars) *	12.5	14.5	7.1	8.5	5.4	3.6	4.5	3.3	3.2	3.1	2.9	2.9	2.9

*Back pressure values are only valid if one single hydraulic damping device is mounted on the ERHARD Check Valve.

In case two hydraulic damping cylinders are mounted, twice the back pressure is permissible.

On request ERHARD Tilting-Disc Check Valves equipped with oleohydraulic damping device can also be supplied with reinforced shafts for higher back-pressures. Specify back pressure when placing the order.

7.3 Maintenance (see drawing 4E106 310)

The oleohydraulic damping device has to be checked for oil leakage at regular intervals. For refilling, open the filling screw at the cover of the damping device and fill hydraulic oil up to the lower edge of the filling hole. Then close filling screw tightly.

Use only: Hydraulic oil, type H-LP 32 to DIN 51525 kinematic viscosity at 40°C, 32 mm²/s to DIN 51562

BA55E001	ERHARD GmbH · D-89502 Heidenheim · Postfach 1280	Page 13 of 14
March 2006	🖀 Phone +49 (0)7321 320-0 🖹 +49 (0)7321 320 491	l dge to of th
REV.7	e-mail: info@erhard.de Internet: http://www.erhard.de	

We recommend:

The hydraulic oil should be replaced every 5 years. In case hydraulic damping devices are installed on both sides, please observe the following:

For hoses and hose pipes, follow ZH 1/74 (HVBG). Even in case of appropriate storage and permissible strain, hoses and hose pipes are subject to a natural ageing process. Thus, storage and usability periods are limited. Therefore, hoses or hose pipes must be replaced at regular intervals, even if no defects concerning safety requirements can be detected. The period of usage should not exceed 6 years including a storage period of max. 2 years.